Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Se Pu ; 42(3): 225-233, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38503699

RESUMO

Algal toxins are secondary metabolites produced by harmful algae; these metabolites are characterized with strong toxicity, diverse structure and bioaccumulation. Aquatic organisms that feed on harmful algae can accumulate algal toxins in their bodies, and the consumption of these organisms by humans can cause symptoms of paralysis, diarrhea, and even death. The onset of poisoning can occur within as little as 30 min; in many cases, no suitable antidote for algal toxins is available. Thus, algal toxins present significant threats to human health, the aquaculture industry, and aquatic ecosystems. Because the potential risks of algal toxins are a critical issue, these toxins have become a research hotspot. The water environment and various types of aquatic products should be monitored and analyzed to ensure their safety. However, because of possible matrix effects and the low content of algal toxins in actual samples, an efficient pretreatment method is necessary prior to instrumental analyses. Efficient sample pretreatment techniques can not only reduce or eliminate interferences from the sample matrix during analysis but also enrich the target analytes to meet the detection limit of the analytical instrument, thereby ensuring the sensitivity and accuracy of the detection method. In recent years, sample pretreatment techniques such as solid-phase extraction (SPE), solid-phase microextraction (SPME), magnetic SPE (MSPE), dispersive SPE (DSPE), and pipette tip-based SPE (PT-SPE) have gained wide attention in the field of algal-toxin separation and analysis. The performance of these pretreatment techniques largely depends on the characteristics of the extraction materials. Given the diverse physicochemical properties of algal toxins, including their different molecular sizes, hydrophobicity/hydrophilicity, and charges, the design and preparation of materials suitable for algal-toxin extraction is an essential undertaking. The optimal extraction material should be capable of reversible algal-toxin adsorption and preferably possess a porous structure with a large surface area to allow for high recovery rates and good interfacial contact with the toxins. Additionally, the extraction material should exhibit good chemical stability in the sample solution and elution solvent within the working pH range; otherwise, it may dissolve or lose its functional groups. Many research efforts have sought to develop novel adsorbent materials with these properties in the separation and analysis of algal toxins, focusing on carbon-based materials, metal organic frameworks (MOFs), covalent organic frameworks (COFs), molecularly imprinted polymers (MIPs), and their functionalized counterparts. Carbon-based materials, MOFs, and COFs have advantages such as large surface areas and abundant adsorption sites. These extraction materials are widely used in the separation and analysis of target substances in complex environmental, biological, and food samples owing to their excellent performance and unique microstructure. They are also the main adsorbents used for the extraction of algal toxins. These extraction materials play an essential role in the extraction of algal toxins, but they also present a number of limitations: (1) Carbon-based materials, MOFs, and COFs have relatively poor selective-adsorption ability towards target substances; (2) Most MOFs are unstable in aqueous solutions and challenging to apply during extraction from water-based sample solutions; (3) COFs mainly consist of lightweight elements, rendering them difficult to completely separate from sample solutions using centrifugal force, which limits their application range; (4) Although MIPs have good selectivity, issues such as template-molecule loss, slow mass-transfer rates, and low adsorption capacity must be addressed. Therefore, the design and preparation of novel functionalized extraction materials specifically tailored for algal toxins and studies on new composite extraction materials are highly desirable. This article collects representative literature from domestic and international research on algal-toxin analysis over the past decade, summarizes the relevant findings, categorizes the applications of novel functional materials in algal-toxin-extraction processes, and provides an outlook on their future development prospects.


Assuntos
Aquicultura , Ecossistema , Humanos , Adsorção , Carbono , Água , Extração em Fase Sólida
2.
J Fungi (Basel) ; 9(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37998864

RESUMO

Three new phlegmaciod species of Thaxterogaster, T. borealicremeolinus, T. rufopurpureus, and T. sinopurpurascens spp. nov., from subtropical China were described based on their morphological characteristics and molecular data. Thaxterogaster borealicremeolinus belongs to the sect. Cremeolinae and differs from the other species in this section in its larger basidiospores and its habitat in the Northern Hemisphere associated with Quercus sp. trees. Thaxterogaster rufopurpureus and T. sinopurpurascens belong to sect. Purpurascentes, in which T. rufopurpureus is characterized by a pileus with a reddish-brown coloration when mature and a clavate stipe, while T. sinopurpurascens is characterized by a violet basidiomata, except for a greyish orange to brown pileus, the distinctly marginate bulb of its stipe, and its distribution in subtropical China. The phylogenetic analyses were performed based on nrITS, and detailed descriptions of the new species are provided herein.

3.
Food Chem ; 429: 136890, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499514

RESUMO

A paper-based assay for visualization of auramine O (AO) was for the first time established by using CFMs as a ratiometric fluorescent probe (RFP). The CFMs were melamine formaldehyde microspheres (MFMs) incorporated with carbon dots (CDs), where the CDs species as sensing units and MFMs as a signal amplification carrier. The proposed RFP can quantitatively measure AO content from 0.0 to 10.0 µM and exhibited an ultralow limit of detection (LOD, 15.7 nM). In particular, obvious luminescence color change of CFMs from blue to green was perceived with naked-eyes and therefore, a solution-based and a paper-based visualization platform were respectively proposed for on-site visual detection of AO with LODs of 1.15 µM and 0.83 µM, separately. Finally, those fluorescence methods were adopted in sensitively quantitative measurement of AO within various food and drug samples, providing new prospects for analysts and technical support in food quality monitoring.


Assuntos
Carbono , Pontos Quânticos , Benzofenoneídio , Microesferas , Corantes Fluorescentes
4.
Microbiol Res ; 275: 127461, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499310

RESUMO

Owing to the threats that Salmonella poses to public health and the abuse of antimicrobials, bacteriophage therapy against Salmonella is experiencing a resurgence. Although several phages have been reported as safe and efficient for controlling Salmonella, the genetic diversity and relatedness among Salmonella phages remain poorly understood. In this study, whole-genome sequences of 91 Salmonella bacteriophages were obtained from the National Center for Biological Information genome database. Phylogenetic analysis, mosaic structure comparisons, gene content analysis, and orthologue group clustering were performed. Phylogenetic analysis revealed four singletons and two major lineages (I-II), including five subdividing clades, of which Salmonella phages belonging to morphologically distinct families were clustered in the same clade. Chimeric structures (n = 31), holin genes (n = 18), lysin genes (n = 66), DNA packaging genes (n = 55), and DNA metabolism genes (n = 24) were present in these phages. Moreover, phages from different subdivided clusters harboured distinct genes associated with host cell lysis, DNA packaging, and DNA metabolism. Notably, phages belonging to morphologically distinct families shared common orthologue groups. Although several functional modules of phages SS1 and SE16 shared > 99% nucleotide sequence identity with phages SI2 and SI23, the major differences between these phages were the absence and replication of functional modules. The data obtained herein revealed the genetic diversity of Salmonella phages at genomic, structural, and gene content levels. The genetic diversity of Salmonella phages is likely owing to the acquisition, loss, and replication of functional modules.


Assuntos
Bacteriófagos , Fagos de Salmonella , Humanos , Fagos de Salmonella/genética , Filogenia , Genoma Viral , Bacteriófagos/genética , Salmonella/genética , DNA , Variação Genética
5.
Talanta ; 264: 124746, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285699

RESUMO

In this paper, the potassium cobalt hexacyanoferrate (II), K2CoFe(CN)6, with peroxidase-like activity was used for the fabrication of a novel label-free Lactobacillus rhamnosus GG (LGG) electrochemical immunosensor. The K2CoFe(CN)6 nanocubes were made by a simple hydrothermal method and followed by low-temperature calcination. In addition to structural characterization, the peroxidase-mimicking catalytic property of the material was confirmed by a chromogenic reaction. It is known that H2O2 can oxidize electroactive thionine molecules under the catalysis of horseradish peroxidase (HRP). In this nanozyme-based electrochemical immunoassay, due to the steric hindrance, the formation of immune-complex of LGG and LGG antibody on the modified GCE inhibits the catalytic activity of the peroxidase mimics of K2CoFe(CN)6 and thus reduced the current signal. Therefore, the developed electrochemical immunosensor achieved quantitative detection of LGG. Under optimal conditions, the linear range of the sensor was obtained from 101 to 106 CFU mL-1 with a minimum detection limit (LOD) of 12 CFU mL-1. Furthermore, the immunosensor was successfully applied in the quantitative detection of LGG in dairy product samples with recoveries ranging from 93.2% to 106.8%. This protocol presents a novel immunoassay method, which provides an alternative implementation pathway for the quantitative detection of microorganisms.


Assuntos
Técnicas Biossensoriais , Lacticaseibacillus rhamnosus , Nanopartículas Metálicas , Peroxidase , Imunoensaio/métodos , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/química , Nanopartículas Metálicas/química , Ouro/química , Peroxidase do Rábano Silvestre/química , Técnicas Eletroquímicas/métodos , Limite de Detecção
6.
Food Chem ; 426: 136611, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356237

RESUMO

Herein, we proposed surface engineering of magnetic peroxidase mimic using bacteriophage by electrostatic interaction to prepare bacteriophage SapYZU15 modified Fe3O4 (SapYZU15@Fe3O4) for colorimetric determination of S. aureus in food. SapYZU15@Fe3O4 exhibits peroxidase-like activity, catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) chromogenic reaction. After introducing S. aureus, peroxidase-like activity of SapYZU15@Fe3O4 was specifically inhibited, resulting in deceleration of TMB chromogenic reaction. This phenomenon benefits from the presence of unique tail protein gene in the bacteriophage SapYZU15 genome, leading to a specific biological interaction between S. aureus and SapYZU15. On basis of this principle, SapYZU15@Fe3O4 can be employed for colorimetric determination of S. aureus with a limiting detection (LOD), calculated as low as 1.2 × 102 CFU mL-1. With this proposed method, colorimetric detection of S. aureus in food was successfully achieved. This portends that surface engineering of nanozymes using bacteriophage has great potential in the field of colorimetric detection of pathogenic bacterium in food.


Assuntos
Bacteriófagos , Peroxidase , Peroxidase/genética , Peroxidase/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Colorimetria/métodos , Peroxidases , Fenômenos Magnéticos , Peróxido de Hidrogênio
7.
Biofilm ; 5: 100118, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37125395

RESUMO

The continuous growth of pathogenic microorganisms and associated biofilms poses severe public health challenges, particularly in food and clinical environments. However, these difficulties have enabled scientists to develop novel and safe methods for combating pathogens. The use of biofilms produced by lactic acid bacteria (LAB) against pathogenic bacteria has recently gained popularity. This review provides an in-depth look at LAB biofilms, their distribution, and mechanisms of action against pathogenic bacteria. More importantly, the bioactive substances produced by LAB-forming biofilm may be active against undesirable microorganisms and their products, which is of great interest in improving human health. Therefore, this review implies that a combination of LAB biofilms and other LAB products like bacteriocins could provide viable alternatives to traditional methods of combating pathogenic microorganisms and their biofilms.

8.
Anal Chim Acta ; 1264: 341310, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37230726

RESUMO

Inorganic arsenic pollution in water spreads all over the world, tremendously threatening environmental safety and human health. Herein, versatile dodecyl trimethyl ammonium bromide modified γ-FeOOH (DTAB-γ-FeOOH) was prepared for sportive removal and visual determination of As(Ⅴ) in water. DTAB-γ-FeOOH displays a nanosheet-like structure with a high specific surface area calculated as 166.88 m2 g-1. Additionally, DTAB-γ-FeOOH shows peroxidase-mimicking feature, which can catalyze colorless TMB to generate blue oxidized TMB (TMBox) in presence of H2O2. Removal experiments show that DTAB-γ-FeOOH exhibits good As(Ⅴ) removal efficiency because modification of DTAB makes γ-FeOOH carry abundant positive charges, improving affinity between DTAB-γ-FeOOH and As(Ⅴ). It is found that theoretical maximum adsorption capacity is up to 126.91 mg g-1. Moreover, DTAB-γ-FeOOH can resist interference of most of co-existing ions. After that, As(Ⅴ) was detected based on peroxidase-like DTAB-γ-FeOOH. As(Ⅴ) can be adsorbed onto DTAB-γ-FeOOH surface, markedly inhibiting its peroxidase-like activity. Based on it, As(Ⅴ) ranging from 1.67 to 3333.33 µg L-1 can be well detected, with a low LOD (0.84 µg L-1). The successful sorptive removal and visual determination of As(Ⅴ) from real environmental water indicated that DTAB-γ-FeOOH has great potential in the treatment of As(Ⅴ)-containing environment water.

9.
Microb Pathog ; 179: 106098, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37028686

RESUMO

Citrobacter freundii is an important foodborne pathogen that can cause urethritis, bacteremia, necrotizing abscess, and meningitis in infants. In this study, a gas-producing isolate from vacuum-packed meat products was identified as C. freundii by 16S rDNA. In addition, a new virulent phage YZU-L1, which could specifically lyse C. freundii, was isolated from sewage samples in Yangzhou. Transmission electron microscopy showed that phage YZU-L1 had a polyhedral head of 73.51 nm in diameter and a long tail of 161.15 nm in length. According to phylogenetic analysis employing the terminase large subunit, phage YZU-L1 belonged to the Demerecviridae family and the Markadamsvirinae subfamily. The burst size was 96 PFU/cell after 30 min of latent period and 90 min of rising period. Phage YZU-L1 could maintain high activity at pH of 4-13, and resist 50 °C for up to 60 min. The complete genome of YZU-L1 was 115,014 bp double-stranded DNA with 39.94% G + C content, encoding 164 open reading frames (ORFs), without genes encoding for virulence, antibiotic resistance, or lysogenicity. Phage YZU-L1 treatment significantly reduced the viable bacterial count of C. freundii in a sterile fish juice model, which is expected to be a natural agent for the biocontrol of C. freundii in foods.


Assuntos
Bacteriófagos , Produtos da Carne , Animais , Bacteriófagos/genética , Citrobacter freundii/genética , Filogenia , DNA , Genoma Viral
10.
Microbiol Res ; 271: 127369, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36996644

RESUMO

The study of bacteriophages is experiencing a resurgence with the increasing development of antimicrobial resistance in Staphylococcus aureus. Nonetheless, the genetic features of highly efficient lytic S. aureus phage remain to be explored. In this study, two lytic S. aureus phages, SapYZU11 and SapYZU15, were isolated from sewage samples from Yangzhou, China. The phage morphology, one-step growth, host spectrum and lytic activity of these phages were examined, and their whole-genome sequences were analysed and compared with 280 published genomes of staphylococcal phages. The structural organisation and genetic contents of SapYZU11 and SapYZU15 were investigated. The Podoviridae phage SapYZU11 and Herelleviridae phage SapYZU15 effectively lysed all of the 53 S. aureus strains isolated from various sources. However, SapYZU15 exhibited a shorter latent period, larger burst size and stronger bactericidal ability with an anti-bacterial rate of approximately 99.9999% for 24 h. Phylogenetic analysis revealed that Herelleviridae phages formed the most ancestral clades and the S. aureus Podoviridae phages were clustered in the staphylococcal Siphoviridae phage clade. Moreover, phages in different morphology families contain distinct types of genes associated with host cell lysis, DNA packaging and lysogeny. Notably, SapYZU15 harboured 13 DNA metabolism-related genes, 5 lysin genes, 1 holin gene and 1 DNA packaging gene. The data suggest that S. aureus Podoviridae and Siphoviridae phages originated from staphylococcal Herelleviridae phages, and the module exchange of S. aureus phages occurred in the same morphology family. Moreover, the extraordinary lytic capacity of SapYZU15 was likely due to the presence of specific genes associated with DNA replication, DNA packaging and the lytic cycle.


Assuntos
Bacteriófagos , Siphoviridae , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Esgotos , Filogenia , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus/genética
11.
Virus Res ; 329: 199102, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963724

RESUMO

Cronobacter sakazakii, a foodborne pathogen, can contaminate powdered infant formula (PIF) and cause life-threatening meningitis, necrotizing colitis and meningoencephalitis in infants. Bacteriophages are increasingly considered an efficient approach to target pathogenic microorganisms. In the current study, four virulent phages that can infect C. sakazakii were isolated from sewage samples, and their biological and complete genomic characteristics were analyzed. A comparative genomic analysis was performed to investigate the functional genes and phylogenetic evolution of the four phages. The results revealed that all four phages belonged to the Ackermannviridae family. Notably, the viral burst size of the phages ranged from 10 to 250 PFU/cell, following a latent period of 5 min to 20 min. Moreover, phages were stable over a pH range of 4 to 10 and a temperature range of 50 ℃ to 60 ℃. The full length of the complete genomes of the four phages ranged from 41,929 bp to 146,806 bp, containing lysis genes but no virulence genes. Phylogenetic tree analysis showed that the four phages were members of two distinct genetic groups with a significant genetic evolutionary distance between each C. sakazakii phage. Furthermore, the antibacterial assay revealed that all phages could inhibit the growth of C. sakazakii for up to 24 h. Taken together, the four phages have huge prospects as additives in dairy products to counter C. sakazakii.


Assuntos
Bacteriófagos , Cronobacter sakazakii , Lactente , Humanos , Cronobacter sakazakii/genética , Filogenia , Genômica , Genoma Viral
12.
Food Chem ; 410: 135380, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608552

RESUMO

An ultrasensitive label-free electrochemical sensor based on a homemade imprinted polypyrrole (PPy) polymer film was prepared to achieve quantitative determination of Lactobacillus rhamnosus GG (LGG). The LGG-imprinted polymer (LIP) film was deposited on a portable screen-printed electrode (SPE) via electropolymerization, which constituted an independent integrated system. The main preparation parameters of the LIP sensor were investigated to obtain optimal performance. Under optimized conditions, the peak current response of the LIP sensor showed a linear relationship with the logarithmic value of LGG concentration in the range from 101 to 109 CFU mL-1 and a detection limit of 5 CFU mL-1. The proposed LIP sensor has achieved efficient, ultrasensitive, highly selective, and cost-effective detection of LGG and can be further developed for practical applications in the quality inspection and development of probiotic products.


Assuntos
Lacticaseibacillus rhamnosus , Impressão Molecular , Polímeros , Pirróis , Eletrodos , Técnicas Eletroquímicas , Limite de Detecção
13.
Food Chem ; 404(Pt A): 134395, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36244071

RESUMO

In this work, an ultrasensitive and convenient method was established for chlorogenic acid (CGA) determination based on fluorescence quenching of carbon dots (CDs). The CDs were prepared by hydrothermal heating of citric acid and p-phenylenediamine. The proposed CDs-based sensing platform showed high selectivity and sensitivity towards CGA detection. Under optimal working conditions, the fluorescence signals of CDs decreased with increasing of CGA contents and presented linear response to CGA content in two ranges of 0.01-0.1 and 0.1-20.0 µM. The detection limits were as low as 8.87 nM and 0.12 µM. The proposed method was successfully applied to analyze CGA in real food samples. The recoveries were between 98.9 % and 106.7 % and the relative standard deviations (RSDs) were below 3.28 %. This work highlights the construction of a facial, simple, economic and highly sensitive fluorescence sensing system for CGA detection with promising application prospects in food analysis.


Assuntos
Carbono , Pontos Quânticos , Ácido Clorogênico , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes
14.
Microb Pathog ; 174: 105948, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36526034

RESUMO

Vibrio mimicus is a zoonotic pathogen that is widely distributed in aquatic habitats/environments (marine coastal water, estuaries, etc). The development of biocontrol agents for V. mimicus is imperative for the prevention and control of aquatic animal diseases and human food-borne infections. In this study, a broad-spectrum bacteriophage Vmp-1 was isolated from dealt aquatic product in a local market by double-layer agar plate method using V. mimicus CICC21613 as the host bacteria. Results indicated that Vmp-1, which belongs to the family Podoviridae, showed good pH tolerance (pH 3.0-12.0) and thermal stability (30-50 °C). The optimal multiplicity of infection (MOI) of Vmp-1 was 0.001 for a 20-min incubation and 100-min lysis period. Vmp-1 effectively controlled V. mimicus CICC21613 in LBS model (MOI = 0.0001, 0.001, 0.01, 0.1, 1) within 8 h. The full length of the Vmp-1 genome was 43,312 bp, with average GC content of 49.5%, and a total of 44 protein-coding regions. This study provides a novel phage strain that has the highest homology with vB_VpP_HA5 (GenBank: OK585159.1, 95.96%) for the development of biocontrol agents for V. mimicus.


Assuntos
Bacteriófagos , Vibrio mimicus , Vibrio , Animais , Humanos , Bacteriófagos/genética , Genômica , Vibrio/genética , Vibrio mimicus/genética , Proteínas de Membrana/metabolismo
15.
Bioengineering (Basel) ; 9(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36290462

RESUMO

Antrodia cinnamomea is a precious and popular edible and medicinal mushroom. It has attracted increasing attention due to its various and excellent bioactivities, such as hepatoprotection, hypoglycemic, antioxidant, antitumor, anticancer, anti-inflammatory, immunomodulation, and gut microbiota regulation properties. To elucidate its bioactivities and develop novel functional foods or medicines, numerous studies have focused on the isolation and identification of the bioactive compounds of A. cinnamomea. In this review, the recent advances in bioactivity, isolation, purification, and identification methods of active compounds from A. cinnamomea were summarized. The present work is beneficial to the further isolation and discovery of new active compounds from A. cinnamomea.

16.
Food Res Int ; 160: 111623, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076436

RESUMO

This article describes the development of a novel liposome nanocarrier system. Carvacrol (Car) is first embedded in ß-cyclodextrin (ß-CD) by the freeze-drying method to form the ß-cyclodextrin-carvacrol inclusion compound (ß-CD-Car), and then ß-CD-Car liposomes (ß-CD-Car-LPs) and ß-CD-Car liposomes coated with S-layer proteins (SLPs) from Lactobacillus buchneri 20023 (SLP/ß-CD-Car-LPs) were prepared. The liposomes were characterized, and their stabilities, in vitro release characteristics, and antibacterial activities were investigated. Results showed that the fabricated liposome SLP/ß-CD-Car-LPs was nanosized, oval and homogenous, with the particle size of 229.1 ± 6.81 nm, the polydispersity index of 0.139, and the zeta potential of 27.9 mV. Measurements based on Triton X-100 resistance indicated that the SLP-coated liposomes were more stable than naked liposomes. The in vitro release study results showed that the rate of release from SLP-coated liposomes was much lower than that from uncoated liposomes. The minimum inhibitory activity (MIC) of SLP/ß-CD-Car-LPs (0.05 mg/mL) was 6.4 times higher than that of the free carvacrol (0.32 mg/mL) and was twice that of ß-CD-Car-LPs (0.1 mg/mL). In general, the stability, antibacterial activity, and sustained release effect of ß-CD-Car-LPs modified with SLPs were improved. Findings suggested that SLP-coated liposomes could be developed as a favorable delivery system for potential applications in the food industry.


Assuntos
Lipossomos , beta-Ciclodextrinas , Antibacterianos/farmacologia , Cimenos , Lactobacillus , Lipopolissacarídeos , Glicoproteínas de Membrana
17.
Front Microbiol ; 13: 830692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464931

RESUMO

Vibrio species are important pathogens of marine animals and aquaculture populations and some of them can cause serious infections in humans through consumption of contaminated seafood and aquaculture products. Lytic bacteriophages can potentially alleviate Vibrio contamination in the aquaculture organisms and in the processing of aquatic products and have gained significant scientific attention in recent years. In the present study, bacteriophages were isolated from sewage of local aquatic products markets and grown using Vibrio mimicus CICC 21613 as host cells. The lytic vibriophage OY1 belonging to the newly proposed family Autographiviridae and the genus Maculvirus was identified by observation under electron microscope and comparative genomic analysis. The phage OY1 showed lytic activity against 24 among 32 tested strains belonging to eight Vibrio species. The complete phage OY1 genome consists of a single circular double-stranded DNA of 43,479 bp with a total GC content of 49.27% and was predicted to encode 40 open reading frames (ORFs). To evaluate its potential against vibrios, the one-step growth curve, thermal and pH stability, host range, and lytic activity of the OY1 phage against Vibrio species were evaluated. The results showed that phage OY1 had a range of thermal and pH tolerance, and exhibited a significant inhibitory effect on the growth of tested Vibrio species. Bacterial growth in the fish muscle extract juice (FMEJ) inoculated with Vibrio mimicus CICC 21613, Vibrio parahaemolyticus CICC 21617, Vibrio alginolyticus VJ14, and the mixed bacterial culture was reduced by 2.65 log CFU/ml, 2.42 log CFU/ml, 1.93 log CFU/ml, and 2.01 log CFU/ml, respectively, by incubation with phage OY1 at 25°C for 36 h. Phage OY1 also showed a strong ability to prevent biofilm formation and destroy formed Vibrio species biofilms. These results indicate that phage OY1 is a potential biocontrol agent against Vibrio species in the aquaculture industry and in food safety control.

18.
Microb Pathog ; 162: 105375, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34974119

RESUMO

Enterobacter hormaechei is a zoonotic bacteria that may cause respiratory diseases in animals and neonatal sepsis in humans. Bacteriophages are increasingly considered as potential biocontrol agents to control pathogens in the food industry. In this study, five E. hormaechei virulent phages, named as Ehp-YZU08, Ehp-YZU10, Ehp-YZU9-1, Ehp-YZU9-2 and Ehp-YZU9-3, were isolated from sewage in China and analyzed for their biological and whole-genome characteristics, and a comparative genomic analysis was performed to study the functional genes and phylogenetic evolution of phages. The results showed that four of the phage strains belong to the Podoviridae family and one belongs to the Myoviridae family. The burst sizes were 70-283 PFU/cell after a latent period of 5-40 min. Phages were able to survive in a pH range of 5-10 and resist temperatures up to 60 °C for 60 min. The sequencing results showed that the full length of the genomes of the five phages ranged from 39,502 to 173,418 bp. Each phage contained multiple genes related to phage replication, and genes related to bacterial virulence or drug resistance were not found. The five phages belonged to three different groups by a construction of a phylogenetic tree, and the significant genetic evolutionary distance from each E. hormaechei phage was observed. The inhibition assay showed that all five phages could completely inhibit the growth of E. hormaechei at 37 °C within 8 h, suggesting that the phages in this study have great potential for the development of biocontrol agents against E. hormaechei in the food industry.


Assuntos
Bacteriófagos , Animais , Bacteriófagos/genética , Enterobacter , Genoma Viral , Genômica , Humanos , Filogenia
19.
J Hazard Mater ; 426: 128029, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942455

RESUMO

Various multi-drug-resistant microorganisms have appeared while a single antibacterial agent is increasingly no longer adequate for dealing with these resistant microorganisms. Herein, commercially purchased 50 nm-average-diameter silver nanoparticles (AgNPs) and Lactobacillus buchneri-isolated surface-layer proteins (SLPs) as a capping agent were used to fabricate a hybrid antibacterial agent (SLP-AgNPs) with enhanced antibacterial activity, and the possible synergistic antibacterial mechanism was explored. Characterization results revealed that SLP-AgNPs were uniformly surrounded by protein corona provided from SLP, and the formulations were mainly mediated by the electrostatic interactions and hydrogen bonding, which was evidenced by the results of Fourier transform infrared spectroscopy. According to the antibacterial tests, the minimum inhibitory concentration of SLP-AgNPs against Salmonella enterica (0.010 mg/mL) and Staphylococcus aureus (0.005 mg/mL) was 5-10 times lower than that of bare AgNPs, and while SLP-AgNPs showed a higher antibiofilm activity. Furthermore, bacterial cells exposed to SLP-AgNPs exhibited higher cell membrane permeability and stronger inhibition of respiratory-chain dehydrogenase activity, resulting in more severe cell death compared with bare AgNPs. The synergistic effect of SLP on AgNPs was probably carried out by enhanced function of adhesion to bacteria and antibacterial ability of SLP and SLP's supramolecular lattice structure on the sustained release of silver ion.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Lactobacillus , Glicoproteínas de Membrana , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Appl Microbiol ; 133(4): 2107-2121, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34932868

RESUMO

Mixed-species biofilms represent the most frequent actual lifestyles of microorganisms in food processing environments, and they are usually more resistant to control methods than single-species biofilms. The persistence of biofilms formed by foodborne pathogens is believed to cause serious human diseases. These challenges have encouraged researchers to search for novel, natural methods that are more effective towards mixed-species biofilms. Recently, the use of bacteriophages to control mixed-species biofilms have grown significantly in the food industry as an alternative to conventional methods. This review highlights a comprehensive introduction of mixed-species biofilms formed by foodborne pathogens and their enhanced resistance to anti-biofilm removal strategies. Additionally, several methods for controlling mixed-species biofilms briefly focused on applying bacteriophages in the food industry have also been discussed. This article concludes by suggesting that using bacteriophage, combined with other 'green' methods, could effectively control mixed-species biofilms in the food industry.


Assuntos
Bacteriófagos , Biofilmes , Manipulação de Alimentos , Microbiologia de Alimentos , Indústria de Processamento de Alimentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...